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Abstract

The development of methods to estimate and project demographic and health
indicators is important to help monitor trends over time. In practice, estimation
often occurs in situations where data are sparse or variability is high. Trends and
projections may be unclear because of missing observations over time, or if the
observed data do not follow a smooth trajectory. Determining how data observa-
tions should be modeled and smoothed over time is not always a straightforward
process. The aim of this paper is to compare the characteristics and performance of
different temporal smoothing techniques to gain a deeper understanding into which
methods work well in different data availability situations and how sensitive the
resulting estimates are to modeling decisions. A review of the three modeling fami-
lies (ARMA models, Gaussian process regression, and penalized splines regression)
is presented, highlighting the main similarities and differences across the methods.
Model performance is evaluated on both simulated and real data, focusing on two
common data scenarios: small populations; and data-sparse situations.

1 Introduction

Accurate measurement of demographic indicators over time is important for mon-
itoring progress at the regional, national and subnational level. Examples of such
indicators include all-cause child or maternal mortality, cause-specific mortality,
fertility rates and contraceptive prevalence, or unmet need in contraceptive use.
To effectively track trends and progress in such indicators, statistical models are
often employed to obtain estimates that are as accurate and reliable as possible, to
project trends into the future, and to get a sense of the uncertainty around these
estimates and projections.
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Health Organization.
†monicaalexander@berkeley.edu
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In practice, estimation often occurs in situations where data are sparse or vari-
ability is high. Trends and projections may be unclear because of missing ob-
servations over time, or if the observed data do not follow a smooth trajectory.
Determining how data observations should be modeled and smoothed over time is
not always a straightforward process.

Model frameworks to estimate time series of demographic indicators commonly
consist of two main parts. The first part is a regression model that expresses the
expected level and trend of the outcome based on some related covariates. The
second part is a temporal smoothing process that allows for non-linearities in the
data to be captured over time. In addition, the temporal model explicitly allows
for the outcome to be forecast and uncertainty intervals to be produced.

A survey of the literature suggests the temporal smoothing component of de-
mographic estimation models is usually one of three families: ARMA (time series)
models, Gaussian process regression, and penalized splines regression. For example,
first- and second-order autoregressive (AR) processes are used in models to estimate
contraceptive prevalence (Alkema et al., 2013) and blood pressure (Finucane et al.,
2014) in countries worldwide. An autoregressive-moving-average model is used in
the estimation of maternal mortality in all UN-member countries. Penalized splines
regression has been used to estimate and project child mortality (Alkema and New
(2014); Alexander and Alkema (2016)) and adult mortality (Currie et al., 2004).
Gaussian process regression has also been used in many contexts, including child
mortality and cause-specific mortality (Foreman et al., 2012). While the technique
chosen in each case appears to perform well, it is not always clear why one temporal
smoothing technique was chosen over another, and how sensitive the model results
would be to different decisions.

The aim of this paper is to compare the characteristics and performance of
these different temporal smoothing techniques to gain a deeper understanding into
which methods work well in different data availability situations and how sensitive
the resulting estimates are to modeling decisions. A review of the three modeling
families is presented, highlighting the main similarities and differences across the
methods. Model performance is evaluated on both simulated and real data, focusing
on two common data scenarios: small populations; and data-sparse situations. The
paper concludes with a discussion about implications for thinking about uncertainty
and model choice.

2 Methods

2.1 Formulation of general modeling framework

Consider the situation of estimating and projecting an outcome over time. This
quantity could be an indicator such as the infant mortality rate, the lung cancer
mortality rate, or the proportion of women using some form of contraception. It is
often the case that models for these outcomes include one or more covariates that are
known to be related in a systematic way. For example, a model used by the World
Health Organization for estimating maternal mortality rates for all UN-member
countries assumes maternal mortality is a function of GDP, the fertility rate and
percent of skilled attendants at birth (Alkema et al., 2016). However, often models
that only include covariates cannot adequately capture temporal trends observed
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in the data. As such, non-linear temporal smoothing methods are added to the
underlying covariate model.

Continuing with the maternal mortality example, data-driven trends are mod-
eled through the inclusion of a time series model that captures accelerations and
decelerations in the rate of change in the maternal mortality. This general modeling
approach, where an outcome of interest is modeled as a combination of an expected
level given covariates and distortions around this expected trend, has been used in
many different scenarios.

Formally, define θt to be the quantity of interest at time t in a particular area.
Define an additive model for θt of the form:

θt = ψt +Xt + εt, (1)

where ψt is the expected level of θt given covariates, Xt are distortions away
from this expected level at time t and εt is an error term.

The focus of this paper is considering different ways to model of the distortions,
Xt. Of course, the choice of how to model the expected level, ψt, is also important
and can affect the resulting estimates substantially. However, in general there has
been less discussion and illustrations in the literature of sensitivities to the choice
of temporal smoothing method for Xt.

2.2 Summary of three main modeling families

Three main method families are considered to model Xt: time series (ARMA)
models; Gaussian process regression; and penalized splines regression. Their main
characteristics are explained below, and then similarities and differences between
the methods are discussed in the next section.

2.3 Time series (ARMA) models

Autoregressive moving average (ARMA) models are fitted to time series data, al-
lowing for autocorrelation (correlation through time) to be taken into account (Box
et al., 2015). The autoregressive (AR) part assumes that the variable of interest is
dependent on its past values. The moving average (MA) part assumes the error in
the regression can be expressed as a linear combination of past errors.

ARMA models are described as ARMA(p,q) where parameters p, and q refer to
the order (number of time lags) of the AR model and the order of the MA model,
respectively. In demographic applications, ARMA models usually have relatively
low orders (two or less). This paper focuses on AR(1) and ARMA(1,1) models.

A first-order Autoregressive process, or AR(1), can be written as

Xt = ρXt−1 + εt,

εt ∼ N(0, σ2).

This implies that an observation at time t is dependent on the previous observa-
tion, plus some error. The larger the autoregressive coefficient, ρ, the greater the
covariance through time.

First-order Autoregressive Moving Average models, i.e. ARMA(1,1) are like
AR(1) but include an additional term that allows errors at a particular time t to
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be dependent on the previous error:

Xt = ρXt−1 + θεt−1 + εt,

εt ∼ N(0, σ2).

These processes are stationary, that is, never diverge from fluctuating around
zero, if |ρ| < 1. For a stationary series, the covariance structure as described by the
covariance function, k(t, t+ s), is independent of t, i.e. k(t, t+ s) depends only on
the distance s. The covariance between points at time t and t+ s can be expressed
as a function of the model parameters, ρ, σ (and θ for ARMA(1,1)). In particular,
the covariance between Xt and Xt+s in an AR(1) process is

k(t, t+ s) =
σ2

1− ρ2
· ρ|s|. (2)

For ARMA(1,1), the stationary covariance between Xt and Xt+s is

k(t, t+ s) =
σ2(ρ+ θ)(1 + ρ · θ)

1− ρ2
· ρ|s|. (3)

Figure 1 illustrates example AR(1) and ARMA(1,1) processes. The larger the
value for ρ, the higher the autocorrelation and the more regular the pattern. For
the ARMA(1,1) process, the pattern is also affected by the value for the MA term,
θ. As θ approaches zero, ARMA(1,1) approaches an AR(1) process.

An extension of ARMA models is ARIMA models, where the I stands for ‘inte-
grated’ and refers to whether the analysis is performed on a differenced series. This
is undertaken if the series on the original scale is not stationary.

2.4 Gaussian process regression

Gaussian processes extend multivariate Gaussian (Normal) distributions to infinite
dimensionality. They are a collection of data points such that any finite subset
of the range follows a multivariate Gaussian distribution. Gaussian processes are
defined in terms of a mean and variance-covariance function, and can form the basis
of a regression to estimate and predict new data points.

Formally, for any sequence of times, t = t1, t2, . . . , tn a Gaussian process (GP)
can be written as

Xt ∼ GP
(
m(t), k(t, t′)

)
.

with mean function m(t) and covariance function k(t, t). Usually the mean function
is set to be zero, as any systematic mean trends are modeled through the expected
level (through the ψt term in Equation 1).

The covariance function can be chosen from a wide range of appropriate func-
tions. This paper focuses on two choices, the squared exponential and Matern
functions, which have been used in demographic modeling. This squared exponen-
tial covariance function is expressed as

k(t, t+ s) = σ2 exp

(
−|s|

2

2λ2

)
. (4)

The λ parameter is a length parameter which controls the smoothness of the fit
of the Gaussian process. The smaller the value λ, the larger the covariance and
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(a) AR(1) with ρ = 0.4
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(b) AR(1) with ρ = 0.9

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

−2

0

2

0 25 50 75 100

Time

V
al

ue

(c) ARMA(1,1) with ρ = 0.9 and θ = 0.6
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(d) ARMA(1,1) with ρ = 0.9 and θ = 0.1

Figure 1: Example AR(1) and ARMA(1,1) with different parameter values

so the smoother the fit. The Matern covariance function is similar to the squared
exponential function, except that it allows for further flexibility in choosing the
level of differentiability. It is expressed as

k(t, t+ s) = σ2
21−ν

Γ(ν)

(√
2ν
|s|
λ

)ν
Kν

(√
2ν
|s|
λ

)
. (5)

Here, Γ is the gamma function, Kν is the modified Bessel function of the second
kind, and λ and ν are non-negative parameters of the covariance. A Gaussian pro-
cess with Matern covariance has sample paths that are dν+ 1

2e times differentiable.1

The λ parameter has a similar interpretation as in the squared exponential func-
tion — the smaller the value for λ, the smoother the fit. As ν → ∞, the Matern
function converges to the squared exponential covariance function. Gaussian and
ARMA processes are explicitly linked. Taking ν = 1

2 , results in functions that are
only once differentiable, and correspond to the Ornstein–Uhlenbeck process, the
continuous time equivalent of an AR(1) (Roberts et al., 2013).

1The d notation refers to the ceiling of ν + 1
2 .
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The varying amount of smoothness in a Gaussian Process is illustrated in Figure
2. Graphs a) and b) show Gaussian processes generated with a squared exponen-
tial covariance function. The smaller the value for λ, the smoother the process.
For processes generated with a Matern covariance function (graphs c) and d)),
smoothness is also influenced by the differentiability parameter, ν. This flexibility
in smoothness is useful for fitting to a wide range of time series data.
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(a) Squared exponential with λ = 1
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(b) Squared exponential with λ = 1/5
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(c) Matern with λ = 1/5 and ν = 1
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(d) Matern with λ = 1/5 and ν = 3

Figure 2: Gaussian processes with different covariance functions and parameter values

2.5 Penalized splines regression

A spline is a piece-wise polynomial with pieces defined by a sequence of knots k.
While splines have a very simple form at the local level, they offer a lot of flexibility
in modeling functions in a smooth way. In particular, we consider cubic splines i.e.
splines constructed of piecewise third-order polynomials, which are commonly used
as a basis for regression in demographic contexts.

In splines regression, cubic basis-splines, or B-splines, are used in a regression

6



framework:

Xt =

K∑
k=1

bk(t)αk

The bks are fixed; bk(t) is equal to the value of the kth B-spline function evaluated
at time point t. The αks are the spline coefficients and need to be estimated.

Splines regression is illustrated in Figure 3. In the figure, each bk is represented
at a different color at the bottom of the chart. Spline placement is determined by
the knot points k which are indicated by gray dotted vertical lines. Knot points
occur when the spline function is at its maximum. The estimated Xt at a particular
point t (as shown by the red line) is given by a linear combination of the splines bk
at time t and the estimated coefficients αk.

●●

●●●

●
●

●

●

●

●
●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

0 20 40 60 80 100

−
6

−
4

−
2

0
2

4
6

Time

V
al

ue

Figure 3: First-order Penalized splines regression

Splines regression models are very flexible and the smoothness of the fit can
vary substantially. One way to control the smoothness of the fit is to change the
spacing of the knot points; when the knots are further apart, there are fewer poly-
nomial pieces and so the fit is more smooth. An alternative way of controlling the
smoothness of the fit of Xt is to penalize differences in adjacent spline coefficients,
αk. These are called Penalized, or P-splines (Currie and Durban (2002); Eilers
and Marx (1996)). In this technique, the knot spacing is taken as constant, and
smoothness is imposed by the coefficient penalization. For example, the first order
differences in the spline coefficients can be penalized, in which case the model set
up includes the specification

αk ∼ N(αk−1, σ
2
α). (6)

The smaller the value for the variance term, σ2α, the smoother the fit. Higher order
differences in the coefficients can also be penalized, for example a second-order
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penalization is
αk ∼ N(2αk−1 − αk−1, σ2α). (7)

For a constant knot spacing, higher-order penalizations will always produce a
smoother fit.

3 Comparison of methods

The three model families are based on different assumptions and produce a smooth
time series in different ways. This section highlights some of the main similarities
and differences between the methods.

For each method, different parameters control the smoothness of the function
(Table 1). The larger the values of ρ, θ and ν, the smoother the process. In contrast,
the smaller the values for λ and σα, the smoother the fit. This can be seen directly
from the formulas for the covariance in each particular case (Equations 2–5), as
the greater the covariance between points, the smoother the fit. A smaller variance
in Equations 6 and 7 for P-splines means that the differences between the spline
coefficients are small.

Broadly, important distinctions between the methods occur when looking at
which process is smoothed; stationarity; differentiability; and the covariance func-
tion.

3.1 Where the smoothing occurs

For ARIMA and Gaussian processes, the underlying process Xt is smoothed: as-
sumptions are made about how different Xt points are related over time, and pa-
rameters in the model allow the process to be more or less smooth. In contrast, in
P-splines regression, a line is fit to the underlying process using splines regression,
and the parameters governing that line are smoothed (Table 1).

This difference has implications for how we think about characteristics of the
underlying process. It is relatively intuitive to think about a time series process
following an ARMA or Gaussian process: distortions being drawn from a Normal
distribution, with distortions close together being more similar than those further
apart. It is less intuitive to think about what the underlying process might look
like in the P-splines scenario, as no explicit assumptions are made - a line is fit to
a time series, and then the smoothness of that line is optimized.

3.2 Stationarity

A stationary time series is one whose statistical properties such as the mean, vari-
ance and autocorrelation are constant over time. The ARMA and Gaussian process
models are stationary: there is a closed form expression for the covariance (which
does not change with time t), and the processes will converge to a fixed mean and
fixed variance.

In contrast, the P-splines models as defined above are not stationary. Once
a P-splines regression is fitted, the empirical covariance between points in the Xt

series can be calculated (Eilers et al., 2015), but there is no closed form expression
for the covariance. In practice the non-stationarity has the most noticeable effect
on projections of time series into the future. Consider a scenario where we are
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interested in projecting forward from t = 0. If we assume a value for the variance
of the first αk, one can derive an expression for the covariance between αt and αt−1.
For example, for first order penalization:

αt = αt−1 + ε

with V ar(ε) = σ2 and E(α0) = 0. Put V ar(α0) = σ20. Then

V ar(αt) = V ar(αt−1) + V ar(ε)

= V ar(αt−2) + 2 · V ar(ε)
. . .

= V ar(α0) + t · V (ε)

= σ20 + t · σ2

Then

Cov(αt, αt−1) = V ar(αt−1) + Cov(αt−1, ε)

= V ar(αt−1)

= σ20 + (t− 1) · σ2

Note that the covariance expression depends on t so the process is not stationary.
For example, Figure 4 shows the same time series of points, fitted with an AR(1)

model and first-order splines regression model. The fit has been projected forward
twenty periods. As a consequence of the non-stationarity of the splines process, the
uncertainty intervals around the projections are much larger than for the AR(1)
model, and continue to increase.

3.3 Differentiability

The differentiability of the underlying process affects how smooth the resulting fit
appears. The higher the number of times the process is differentiable, the more the
resulting fits are ‘rounded’. ARMA processes are only differentiable once, which
means that fits of ARMA processes can appear quite jagged (see for example, the
AR(1) fit in Figure 4). The differentiability of P-splines regression models is de-
termined by the order of the splines used; in the case of cubic splines, the process
is twice differentiable. Gaussian processes with a squared exponential covariance
function infinitely differentiable, while the differentiability of those with Matern
covariance function can be varied by specifying different values of ν. As mentioned
above, as ν → ∞, the Matern function converges to the squared exponential co-
variance function, and becomes infinitely differentiable.

3.4 Covariance function

A covariance function describes how Xt and Xs are related to each other, where t
and s are different points in time. Intuitively, a covariance function should be of
the form such that if t ≈ s, then the covariance function approaches a maximum,
meaning that Xt and Xs are very similar values. As the time points t and s get
further apart, the covariance function approaches zero, and there is no dependency
between the two points.
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(b) First-order P-splines fit and projection

Figure 4: Two different smoothing functions fit on the same data. Fit 1 is an AR(1)
model. Fit 2 is a first-order penalized splines regression. The fits have been projected
forward twenty periods. The red line represents the mean estimate, and corresponding
shaded area the 95% Bayesian credible intervals.

The covariance functions associated with all three methods have this general
form. Indeed, this sort of covariance structure forms the basis of temporal smooth-
ing - points closer to each other in time are more similar to those that are far apart.
However, the covariance functions associated with each method differ in their rate
of decay over time. This in turn affects the smoothness of fit. The higher the
covariance between points, the smoother the fit of the Xt series.

To illustrate the relative rate of decay of the covariance functions, each method
was fit to time series of the same process, and estimated parameter values were
recorded. This was repeated 1,000 times, and the mean parameter estimates were
calculated. Using these values, the estimated covariance between points over time
can be calculated.

Figure 5 shows the correlation over time for each of the models fit to the same
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time series: an ARMA(1,1) process with ρ = 0.7 and θ = 0.1. The P-splines
methods have the slowest decay, and therefore produce the smoothest fits. The
correlation between points falls to approximately zero the fastest with Gaussian
processes, especially with squared exponential function. While the correlation ini-
tially drops off relatively quickly for the ARMA models, after a distance of three
time points, the correlation is higher than for the Gaussian process methods.
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Figure 5: Correlation between points with increasing distance. Parameters for each
method were based on the estimated fit on an ARMA(1,1) time series simulation with
ρ = 0.7 and θ = 0.1.
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Table 1: Summary of methods

Method
Smoothing

parameter(s)
What is

smoothed
Stationary? Differentiability

Covariance
rate of decay

AR(1) ρ Xt yes once medium
ARMA(1,1) ρ, θ Xt yes once medium
GP with squared exponential λ Xt yes infinite fast
GP with Matern λ, ν Xt yes depends on ν fast
P-splines σα αk no twice (with cubic splines) slow
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4 Comparing different data availability sce-

narios

The following sections aim to illustrate sensitivities in estimates, projections and
uncertainty levels to different choices of temporal smoothers. The focus is on two
different data scenarios which are examples of demographic estimation problems
where quantifying the uncertainty around estimates and projections is important.

The first is the situation where data are readily available and considered to be
good quality; however the event of interest is relatively rare and so the stochastic
variability around the data are high. An example of this estimating mortality at
the subnational level in developed countries. Mortality schedules in small areas are
often highly erratic and may have zero death counts. In these situations, models
are employed to try and estimate the underlying true mortality rates (Congdon
et al. (1997); Alexander et al. (2016)).

In the second situation, there are limited data available on an indicator of inter-
est. This is a common scenario when estimating time series for demographic and
health indicators in developing countries. For example, 47% of the 193 UN-member
countries have three or less observations of maternal mortality rates between the
period 1990-2012.

Fitting models in the two data availability scenarios are investigated through
both simulated data and two real data case studies.

4.1 The distortr package

The computational tools used to investigate the different methods are available
through the R package accompanying this paper, distortr.2 The code builds on
the methods discussed above, providing tools to investigate the different behavior
of methods in a range of data scenarios. The package consists of two main parts:

1. Functions to simulate time series of distortions and fit and validate models on
simulated data.

2. Functions to fit Bayesian hierarchical models to datasets with observations
from multiple countries. The user can specify the type of temporal smoother
to fit to the data.

All models are fitted in a Bayesian framework using the statistical software R.
Samples were taken from the posterior distributions of the parameters via a Markov
Chain Monte Carlo (MCMC) algorithm. This was performed through the use of
JAGS software (Plummer, 2003).

5 Comparison using simulated data

5.1 Setup

Methods were first fit to, and evaluated on, simulated data designed to mimic the
two data scenarios discussed above. For each scenario, a time series of 100 time
periods of data was simulated from each of the following processes:

2https://github.com/MJAlexander/distortr.

13



• AR(1) with ρ = 0.8;

• ARMA(1,1) with ρ = 0.8 and θ = 0.2;

• Gaussian process with squared exponential covariance, λ = 1; and

• Gaussian process with Matern covariance λ = 1/5 and ν = 2.

In each case, the last ten periods of observations were removed before fitting
and the time series was projected to the full 100 periods. This was done in order
to investigate differences in projections. In addition, the following alterations were
made to mimic the two data availability scenarios:

1. For the small population scenario, it was assumed that standard errors around
the observed data were equal to 1.

2. For the sparse data scenario, 50% of the data in the first 90 periods (i.e. 45
observations) were removed before fitting.

Each of the methods was fit to the simulated time series above (AR(1), ARMA(1,1),
Gaussian process with squared exponential covariance, Gaussian process with Matern
covariance, first-order P-splines and second-order P-splines). Model fits were eval-
uated on different metrics to understand how much it matters if the ‘wrong’ model
is fit to a particular underlying process.

Time series of data was simulated 1000 times for each underlying process and
models were fitted to each simulation. Model performance was then assessed on
the average performance across all simulations.

5.2 Model comparison

Several metrics were considered to assess different aspects of model performance.
The root-mean-squared-error (RMSE) was calculated to assess the average error
between fitted and true values:

RMSE =

√√√√ T∑
t=1

(X̂t −X∗t )2

T
,

where X̂t is the estimated value at time t from the model of interest and X∗t is the
true value at time t and T is the total number of observations.

In addition, the sharpness of the uncertainty intervals was measured by:

nt =

T∑
t=1

(rt − lt)
T

where lt and rt are the lower and upper bounds of a 95% Bayesian credible inter-
val, respectively. The average width was measured separately for estimated and
projected values.

5.3 Results

Tables 2 and 3 show the RMSE for each method (row) fit to different underlying
processes for data scenario 1 (small populations) and 2 (sparse data), respectively.
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Table 2: RMSE, Scenario 1 (small populations)

Process
Method AR(1) ARMA(1,1) GP sq exp GP Matern
AR(1) 0.35 0.47 0.66 0.07
ARMA(1,1) 0.36 0.48 0.63 0.06
GP sq exp 0.40 0.50 0.57 0.04
GP Matern 0.64 0.80 0.68 0.06
Splines 1 0.48 0.64 0.64 0.05
Splines 2 0.60 0.75 0.60 0.05

Table 3: RMSE, Scenario 2 (sparse data)

Process
Method AR(1) ARMA(1,1) GP sq exp GP Matern
AR(1) 0.46 0.57 0.28 0.01
ARMA(1,1) 0.47 0.60 0.25 0.01
GP sq exp 0.99 1.52 0.58 0.01
GP Matern 1.29 1.51 0.66 0.01
Splines 1 0.62 0.71 0.24 0.01
Splines 2 0.91 1.21 0.52 0.01

In general, processes are best described by the model from the same family. The P-
splines models produce relatively smooth fits and generally have the highest RMSEs.
Model misfit is more prevalent in Scenario 2, where there are incomplete time series.

Tables 4 and 5 show the average width of the 95% uncertainty intervals within
the estimates and projections. Several observations can be made. Firstly, for the
estimated time series points, the ARMA processes have the widest uncertainty
intervals, followed by Gaussian processes and then P-splines. In contrast, when it
comes to projection, the order is switched: in general ARMA processes have the
smallest uncertainty interval width, while P-splines have the largest. Differences
across methods are more noticeable in scenario 2, where the data are sparse.

Table 4: Average uncertainty interval width, Scenario 1

Method Estimates Projections
AR(1) 1.73 3.14
ARMA(1,1) 1.69 3.38
GP sq exp 1.64 3.50
GP Matern 1.51 3.60
Splines 1 1.46 4.74
Splines 2 1.42 7.91

These differences in the width of uncertainty intervals is related to both the
shape of the covariance function for different methods and the stationarity of the
process. As seen in Figure 5, the covariance function for the ARMA models de-
creases quickly relative to the other methods. This means that, in general, there is
less assumed correlation between points through time, and so there are more possi-
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Table 5: Average uncertainty interval width, Scenario 2

Method Estimates Projections
AR(1) 1.83 4.27
ARMA(1,1) 1.81 4.37
GP sq exp 1.82 4.33
GP Matern 1.78 4.99
Splines 1 1.06 13.3
Splines 2 1.04 24.29

ble paths for estimates to follow. This makes the uncertainty around the estimates
higher.

In terms of projections, the P-splines processes are not stationary, which means
uncertainty around the projections continues to increase over time. Note that in
the simulation setup the time series were projected forward ten periods. The obser-
vation that uncertainty is higher around P-splines projections does not necessarily
hold for shorter-term projections. Indeed, shorter-term projections for P-splines
may have smaller amounts of uncertainty due to the higher implied covariance
between points.

6 Comparison using case studies

The two different data scenarios were also investigated through fitting models to
real data. The example for Scenario 1 (small populations) was Australian regional
mortality, while the example for sparse data availability was global estimation of
antenatal care.

Each of the models described above were fit to data in the two case studies. The
relative performance of the models was assessed using the deviance information cri-
terion (DIC). This criterion measures a combination of model fit and a penalization
based on the number of parameters. Also considered was the root-mean squared
relative difference between each pair of models:

RMSRD =

√√√√ 1

T

T∑
t=1

(X̂tk − X̂tl)2

X̄tk
,

where X̂tk and X̂tl are the estimated values at time t for models k and l. The
average width of uncertainty intervals was also measured as above.

6.1 Small populations: Australian regional mortality

The dataset used to explore fitting to small populations was mortality rates by Local
Government Area (LGA) in the state of New South Wales (NSW) in Australia.
Data were obtained from the Australian Bureau of Statistics (ABS, 2016). There are
157 LGAs in NSW, which is the most populous state in Australia. The population
size varies widely across the LGAs, ranging from less than 2,000 people in some
rural areas, to almost 340,000 people in Blacktown (an area in Western Sydney).

Standard errors around the observed death rates were obtained by assuming
deaths follow a Poisson distribution. The mortality rate was estimated for all areas
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over the period 2000-2020. Data were available each year between 2000 and 2015
and the last five years were projected forward. Each method was fit within a
Bayesian hierarchical framework, using functions as part of the distortr package.
The hierarchical setup allows information about smoothness and autocorrelation to
be pooled across areas.

6.1.1 Results

Results of fitting to the NSW mortality dataset suggest that model performance
is relatively similar across all methods (Tables 6, 7 and 8). The DIC (Table 6)
is the lowest for the AR(1) model, suggesting that this is the preferred model in
this data scenario. Note that the AR(1) and a Gaussian process with a squared
exponential models are the most parsimonious, as only one parameter needs to
be estimated per region (ρ and λ, respectively). In contrast, P-splines regression
requires the estimation of the smoothing parameter (σα) and also as many spline
coefficients αk as there are knots. The DIC values suggest that any improvement
in fit with P-splines was not enough to offset the increase in parameters that need
to be estimated.

Table 6: DIC for each method, Scenario 1

Method DIC
AR(1) 28,084.27
ARMA(1,1) 28,781.48
GP sq exp 28,627.09
GP Matern 28,566.73
Splines 1 28,812.79
Splines 2 28,706.46

The root-mean-squared differences between methods (Table 7) also suggest rel-
atively small differences in the point estimates across methods. The differences
were the smallest within the modeling families; i.e. AR(1) and ARMA(1,1) were
most alike, the same being for the Gaussian process and P-spline pairs. The largest
differences were between the ARMA methods and second-order P-splines.

Table 7: Root-mean-squared differences between methods, Scenario 1

AR(1) ARMA(1,1) Splines 1 Splines 2 GP Matern
AR(1) - - - - -
ARMA(1,1) 0.0070 - - - -
Splines 1 0.0334 0.0331 - - -
Splines 2 0.0403 0.0403 0.0175 - -
GP Matern 0.0311 0.0313 0.0141 0.0257 -
GP sq exp 0.0322 0.0321 0.0146 0.0281 0.0051

Comparing the average width of uncertainty intervals around the projections
(i.e. 2016-2020) again suggests that all the methods were fairly similar. While the
ARMA models have the largest average uncertainty, the second order P-splines has
the widest uncertainty interval around the last year. Again, this is related to the
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interactions between the covariance function and stationarity. The rate of decay
of the ARMA covariance functions is relatively fast, so the uncertainty around
projections also increases relatively fast; however, a stationary variance is reached.
In contrast, uncertainty in P-splines projections continues to increase over time.

Table 8: Average width of projection 95% uncertainty intervals, Scenario 1

Method Average interval width Last interval width
AR(1) 0.159 0.182
ARMA(1,1) 0.166 0.192
Splines 1 0.123 0.183
Splines 2 0.137 0.210
GP Matern 0.117 0.172
GP sq exp 0.103 0.188

The graphs shown in Figure 6 illustrate how each of the methods fit the NSW
mortality data. The ARMA methods are less smooth than other methods due to
being lower-order differentiable process. Uncertainty around estimates in the period
2010-2015 is fairly similar, but lowest for the P-spline methods.

6.2 Sparse data: global data on antenatal care visits

The second case study explored fitting to sparse data. The example dataset is
a global database on antenatal care. Specifically, the indicator of interest is the
percentage of women aged 15-49 years attended at least four times during pregnancy
by any provider (hereafter referred to as ANC4). The database was provided by the
World Health Organization (WHO, 2017) and was compiled from publicly available
data. The aim of modeling is to produce estimates of ANC4 (and uncertainty) for
all countries from over the period that corresponds to the first observation year in
that country to the year 2015.

Data are available for 150 countries, with the number of observations and ob-
servation time period varying substantially by country. Many countries only have
very limited data, with only one or two observations.

Modeling was done on the logit scale to ensure estimates produced are between
zero and one. Standard errors were obtained assuming the proportion of women
seeking antenatal care follows a binomial distribution. Given many of the data
sources may not be representative of the broader population, it is likely that non-
sampling errors also need to be accounted for. For the ANC4 data, there are
three source types: survey, administrative, and other. The majority of the data
come from surveys or administrative sources, but there are also some data from
other sources such as the Pan American Health Organization, Health Information
and Analysis Project. Non-sampling error is estimated in the modeling process.
In practice, administrative data has the smallest non-sampling error, followed by
surveys and then other sources.

6.2.1 Results

In contrast to Scenario 1, the DIC for different methods varies quite substantially
(Table 9). The Gaussian process methods and second-order P-splines have the best
DIC results, while the ARMA models perform the worst.
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Figure 6: Estimates and projections for the mortality rate in Albury
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Table 9: DIC for each method, Scenario 2

Method DIC
AR(1) 5,630.893
ARMA(1,1) 7,009.201
GP sq exp 1,711.868
GP Matern 1,832.049
Splines 1 3,299.185
Splines 2 1,753.965

Comparing the root-mean square differences suggests that on average the point
estimates across the different methods vary more widely than in Scenario 1, but
are still are fairly similar (Table 10). Again, the pairs of models within the same
family are the most similar.

Table 10: Root-mean-squared differences between methods, Scenario 2

AR(1) ARMA(1,1) Splines 1 Splines 2 GP Matern
AR(1) - - - - -
ARMA(1,1) 0.0212 - - - -
Splines 1 0.0298 0.0245 - - -
Splines 2 0.0360 0.0336 0.0258 - -
GP Matern 0.0320 0.0293 0.0149 0.0270 -
GP sq exp 0.0320 0.0297 0.0151 0.0265 0.044

Due to data sparsity and the presence of non-sampling errors, the average un-
certainty around estimates and projections is much higher in the ANC4 case. In
addition, the variation in uncertainty across methods is much greater (Table 11).
Average uncertainty for ARMA methods is around 1.5 times more than the P-
splines methods, and this observation also holds for the projections.

Table 11: Average width of projection 95% uncertainty intervals, Scenario 2

Method Average interval width
AR(1) 0.462
ARMA(1,1) 0.494
Splines 1 0.399
Splines 2 0.287
GP Matern 0.354
GP sq exp 0.343

Figure 7 illustrates the differences across methods fit to the ANC4 data for
Bolivia. There are multiple data sources; data in earlier periods are from sur-
veys, while the last two observations are from another, non-administrative source
(Pan American Health Organization, Health Information and Analysis Project).
As mentioned above, the estimated non-sampling error associated with survey data
is smaller than other sources, and so the overall fit is less influenced by the last two
observations.
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In general, there are two main differences across the methods. Again the the
smoothness of fit varies, which is influenced by the differentiability of the process.
For example, the Gaussian process with squared exponential process is infinitely
differentiable, which leads to a very smooth fit. In contrast, AR(1) and ARMA(1,1)
fits can have more sharp points, and this is reflected in the shape of the uncertainty
bands. In addition, methods with covariance functions with relatively slow rates
of decay have smoother fits, and also leads to uncertainty intervals being generally
smaller and smoother. This is particularly the case for the second-order P-splines,
whose uncertainty interval does not even include the last two data points.

7 Discussion

The development of methods to estimate and project demographic and health in-
dicators is important to help monitor and understand trends and inequalities over
time. In addition to classical covariate-based regression models, it is often the case
that estimation methods require a temporal component which is flexible enough to
capture data-driven non-linearities in trends over time. These temporal methods
are also important in capturing uncertainties in the inherent stochastic process that
is underlying the data. This paper presented a review of three families of temporal
smoothing methods commonly found in demographic literature. After highlighting
similarities and differences in the underlying assumptions of each model family, the
sensitivity of fits to model choice were exploring using both simulated and real data.

One of the most important observations was that model choice affects not only
point estimates but also affects — and perhaps even to a larger extent — the im-
plied uncertainty around estimates and projections. In general, simple lower-order
ARMA processes such as AR(1) and ARMA(1,1) appear to produce larger uncer-
tainty bands around estimates and short-term projections. On the other hand,
P-splines regression techniques provide relatively small uncertainty bands around
estimates, but the uncertainty around longer-term projections quickly increases
more than any of the other methods considered. Differences are particularly no-
ticeable in data-sparse scenarios.

While demographic modeling has traditionally been based on deterministic
methods, there has been an increasing move towards including stochastic methods
to fully capture uncertainty in estimates and projections (Girosi and King (2008);
Raftery et al. (2012); UNPD (2017)). Indeed, producing and reporting estimates of
uncertainty is important in demographic research because it communicates a mea-
sure of level of confidence we have about trends in the past and what is likely to
happen in the future. However, this work highlights the importance of considering
different sources of uncertainty and what types are included in any estimation. We
need to think about difference sources of error and uncertainty in data and also
model choice. Just because uncertainty levels are estimated, does not mean that
they are the ‘right’ levels, and could be driven by model choice, which often is
relatively arbitrary.

In terms of model choice, there are many factors that affect what is appropriate
to use in different data scenarios. This paper has focused on the temporal smooth-
ing aspect only, but of course important modeling decisions must also be made
with regards to any covariate-based modeling framework. In light of the analysis
presented in this paper, it may be useful to consider the following to help inform
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Figure 7: Estimates and projections for ANC4 in Bolivia
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the choice of temporal smoothing method, and motivate future research.
An important consideration is whether there is prior information or beliefs about

the data generating process underlying the outcome of interest. For example, if data
on the outcome of interest is readily available, it may be feasible to explore the
autocorrelation structure implied by the data, through examination of the sample
autocorrelation and sample partial autocorrelation functions. Results from this
analysis could be used to inform model choice. If the dataset of interest contains
countries or regions that have different data availability, then patterns in the high-
quality data countries could be used to inform other countries in a hierarchical
setup.

If the available data are sparse for most population of interest, then it may not
be possible to get a good idea of the autocorrelation structure. Additionally, as the
analysis in this paper highlighted, situations with sparse data are the most sensitive
to model choice. One modeling approach could be to assess the performance of a
range of methods using both in- and out-of-sample metrics; for example, testing on
a validation dataset to assess error and coverage of uncertainty intervals (see for
example Alkema and New (2014)). If there is a stand-out method then that could
be used; otherwise, the most parsimonious model may be the most appropriate.

There have been large advancements in methods used in demographic estimation
which allow for more robust estimates to be produced, giving an indication of
how certain we are about these estimates. It is important to be aware of the
many sources of uncertainty that occur when choosing a modeling framework, and
how sensitive the outcomes may be to these choices. Greater transparency in why
modeling decisions are made is important in improving the understandability and
reproducibility of demographic research.
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