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Abstract
Accurate estimates of subnational populations are important for policy formulation and monitoring

population health indicators. In particular, estimates of the number of women of reproductive age affect
measures of maternal mortality, contraceptive prevalence and fertility. However, in many developing
countries, data on population counts are limited and are of poor quality, and so levels are unclear. We
present a Bayesian hierarchical model to estimate female populations at the subnational level. The
model builds on a cohort component projection framework, incorporates data on population counts and
migration, and uses characteristic mortality schedules to obtain population estimates and uncertainty
levels. The model is applied to estimate and project populations by county in Kenya for 1979-2020.

1 Introduction

Reliable estimates of demographic and health indicators at the subnational level are essential for monitoring
trends and inequalities over time. As progress towards targets such as the Sustainable Development Goals
(SDGs) is tracked, there has been increasing recognition of the substantial differences that can occur across
regions within a country (World Health Organization (WHO) (2016b); Lim et al. (2016); He et al. (2017)). It
is important to measure and monitor trends at the subnational level to fully understand a country’s progress
and likely future trajectories.

To effectively measure health indicators of interest, we need to be able to accurately estimate the size of
the population at risk. Differences in estimates of the denominator can have a large effect on the resulting
estimates of key indicators. For example, in 2017 the United Nations Inter-agency Group for Child Mortality
Estimation (UN-IGME) and the Institute for Health Metrics and Evaluation (IHME) both published estimates
of under-five child mortality in countries worldwide (GBD 2016 Mortality Collaborators (IHME) (2017);
UN-IGME (2017)). However, estimates for 2016 differed markedly, with IHME’s estimate being 642,000
deaths lower than the UN-IGME estimate. The main reason for the discrepancy was the different sets of
estimates of live births: IHME assumed there were 128.8 million live births in 2016, which was 12.2 million
lower than the 141 million used by UN-IGME. Thus, it is important to accurately measure the population at
risk over time.

A particular population of interest is women of reproductive age (WRA), i.e. those aged 15-49. This subgroup
forms the population at risk for many important health indicators such as fertility rates, maternal mortality,
and measures of contraceptive prevalence. We need to be able to accurately estimate the size of the population
at risk in order to effectively measure these indicators. However, the data available on the number of WRA
at the subnational level vary substantially by country. Often data availability and quality is the worst in
countries where outcomes are also relatively poor. For example, many developing countries may only have one
or two historical censuses available. Although simple population interpolation and projection is often possible
using the available data, these methods do not account for changing mortality or migration patterns, and
do not give any indication of uncertainty around the estimates or projections. As such, we need to employ
statistical models to come up with robust population estimates and uncertainty levels.
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In this paper, we present a Bayesian hierarchical model to estimate subnational populations of WRA. The
model embeds a cohort component projection setup in a Bayesian framework, allowing uncertainty in data and
population processes to be taken into account. The model uses available data on population and migration
counts from censuses, as well as national-level information on mortality and population trends. As such, the
methodology is applicable across a wide range of countries. Subnational estimates are calibrated to produce
results that are consistent with those produced by the UN as part of the World Population Prospects (UNPD
(2017a)). Results from the model can input to demographic and health indicators at the subnational level
but also to understand drivers of population change and how these may in turn affect trends in indicators of
interest.

The remainder of this paper is structured as follows. The next section gives a brief overview of existing
methods of subnational population estimation. We then describe the main data sources used, and then give a
detailed description of the proposed methodology. The performance of the model is then illustrated through
the estimation and projection of populations across districts in Kenya. Results and future work are then
discussed.

2 Existing methods of subnational population estimation

Methods to estimate population at the subnational level are similar to estimation methods at the national
level. However, there are several notable challenges of subnational population estimation that do not exist
at a country level. Firstly, migration flows are more important at the subnational level. While migration
flows are often assumed to be negligible at the national level, they are usually larger as a proportion of total
population size at the regional level. In addition, migration flows at the subnational level are also often
more difficult to estimate. Any particular region could have net in- or out-migration, and flows to and from
different regions can differ markedly in magnitude. Secondly, when estimating subnational populations, it is
important to ensure the sum of all regions agrees with national estimates produced elsewhere. In practice,
this usually involves a process of calibration against a known national population, adjusting shares by region
in potentially an ad-hoc way, so that they match the total. Lastly, data quality and availability is often
poorer at the subnational level. Populations at the regional level are smaller and data are often more volatile,
and data on key indicators of mortality and internal migration is often lacking or unreliable.

2.1 Traditional methods

Perhaps the simplest and least data-intensive methods of subnational population estimation involve interpo-
lation and extrapolation of regional shares of the total population (Swanson and Tayman (2012)). Given
two (or more) censuses, one can calculate the relevant shares of the population by age, sex and region and
see how they have changed over time. Intercensal estimations of populations assume constant increase (or
decrease) over time. Projection of populations into the future can then be made based on assumptions of
constant levels or trends in shares. For example, the U.S. Census Bureau produce subnational population
estimates for the majority of countries worldwide (U.S. Census Bureau (2017)). The methods used to produce
such estimates involve making assumptions such as constant or logistic growth, and iteratively calculating
population proportions by age, sex and region such that they match the country’s total populations (Leddy
(2017)).

The most commonly used methods of population estimation and projection are cohort component methods.
These center on the demographic accounting identity, which states that the population size (P ) at time t is
equal to the population size at t− 1, plus births (B) and in-migrants (I), minus deaths (D) and out-migrants
(O) (Wachter (2014)):

Pt = Pt−1 +Bt−1 + It−1 −Dt−1 −Ot−1 (1)
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The above equation is for a total population, but the same accounting equation holds for each age group
separately (where births only affect the first age group). The cohort component method of population
projection (Leslie (1945)) takes a baseline population with a certain age structure and survives it forward
based on age-specific mortality, fertility and migration rates. Cohort component methods are more data-
intensive than extrapolation methods, which is particularly an issue at the subnational level. For developing
countries in particular, where well-functioning vital registration systems do not exist, sufficient data on
mortality, fertility and migration is often lacking.

Other methods of subnational estimation involve building regression models which relate other variables of
interest to changes in population over time. For example, one could regress the ratio of census populations
(area of interest / total population) against the ratio of some other indicator e.g. births, deaths, voters, school
enrollments (see Swanson and Tayman (2012) for a detailed review). However, given the lack of data available
in many developing countries – on population counts, let alone other indicators of growth – these methods
have limited use in our context.

These traditional methods of population estimation are deterministic and do not account for random variation
in demographic processes and possible measurement errors that may exist in the data. In practice, the
population data that are available in developing countries are often sparse and may suffer from various types
of errors. When estimating and projecting population sizes through time, it is particularly important in
developing country contexts to give some indication of the level of uncertainty around those estimates, based
on stochastic error, measurement error and uncertainties in the underlying modeling process.

2.2 Bayesian methods

The use of Bayesian methods in demography has become increasingly common, as it provides a useful
framework to incorporate different data sources in the same model, account for various types of uncertainty,
and allow for information exchange across time and space (Bijak and Bryant (2016)). Bayesian methods
have been used to model and forecast national populations (Raftery et al. (2012); UNPD (2017a)), fertility
(Alkema et al. (2011)), mortality (Alexander and Alkema (2018); Alkema and New (2014); Girosi and King
(2008)) and migration (Bijak (2008)). Particularly relevant to this work is the methodology proposed by
Wheldon et al. (2013) for the reconstruction of past populations. The model embeds the demographic
accounting equation within a Bayesian hierarchical framework, using information from available censuses
and surveys to reconstruct historical populations. The authors show the method works well to estimate
populations and quantify uncertainty in a wide range of countries with varying data availability (Wheldon et
al. (2016)).

In the field of subnational estimation, Bayesian methods have also been used in many different contexts.
For subnational mortality estimation, many researchers have used Bayesian hierarchical frameworks to
share information about mortality trends across space and time, in contexts where the available data are
both reliable (Congdon, Shouls, and Curtis (1997); Alexander, Zagheni, and Barbieri (2017)) and sparse
(Schmertmann and Gonzaga (2018)). For subnational fertility estimation, Sevcikova, Raftery, and Gerland
(2017) propose a Bayesian model that produces estimates and projections of subnational total fertility rates
(TFRs) that are consistent with national estimates of TFR produced by the UN. Building from the local
level up, Schmertmann et al. (2013) propose a method which uses empirical Bayesian methods to smooth
volatile fertility data at the regional level, before modeling using a Brass relational model variant. In terms of
population estimation at the subnational level, Bryant and Graham (2013) proposed a Bayesian hierarchical
model to estimate subnational populations in New Zealand. Similarly to the Wheldon et al. methodology,
this model builds a framework around the demographic accounting equation, allowing information from many
different sources The focus of the Bryant and Graham paper is how to reconcile and incorporate information
about the population from sources such as censuses, and school and voting enrollments.

There is an increasing amount of work using geo-located data and satellite imagery to estimate population
sizes and flows in developing countries (Tatem et al. (2013)). Led by the WorldPop project at the University
of Southampton (WorldPop (2018)), researchers have used information from satellite imagery to identify
areas of settlements, and combined this information with census data to obtain highly granular population
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density estimates across Africa (Linard et al. (2012)). These results have then been combined with data on
age- and sex-distributions from censuses (or more recent surveys) to map the distribution of populations
by age and sex. While the fine-grained resolution of this work is impressive, there are two main drawbacks
in using these estimates as denominators to track health indicators over time. Firstly, the population age
distribution is based on observations from the most recent census, or survey data if a census is not available.
Little attention is paid to how age distributions across regions change over time. In addition, it is unclear
how uncertain estimates in a particular region may be, and how that uncertainty varies over geographic space
and time. Understanding uncertainty around population sizes and flows is essential in quantifying overall
uncertainty about a country’s progress through time.

The methodology proposed in this paper incorporates a cohort component projection model into a Bayesian
hierarchical framework to understand changes in population structures over time. It allows estimates to
be driven by available data and for uncertainty to be incorporated around estimates and projections. The
approach has similarities with methodologies described in Wheldon et al. (2013) (but with a focus on
subnational estimation) and in Bryant and Graham (2013) (but with a focus on data-sparse situations).

3 Data

We aim to estimate female population counts for ages 15-49 for subnational areas that are the second
administrative level down. This data description focuses on Kenya, for which the model is applied in later
sections. However, the data and methods are more broadly applicable to other countries that have similar data
available. Inputs used to obtain estimates come from two main sources: censuses, and national population
and mortality estimates from the 2017 World Population Prospects. These data sources are outlined in the
following sections. In addition, we discuss other data sources that were considered as potential inputs, but
were not used at this stage of the project.

3.1 Census data

Data inputs on subnational population counts and internal migration flows come from national censuses.
The census data are available through Integrated Public Use Microdata Series (IPUMS) International
(Minnesota Population Center 2017). IPUMS-International contains samples of microdata for 305 censuses
over 85 different countries. The data are harmonized to create temporally stable variables and geographic
boundaries. The harmonization over time is useful in modeling population over time without having to deal
with apportioning populations across changing geographic boundaries. The majority of countries of interest
have relatively recent censuses available through IPUMS-International. For example, Kenya has decennial
censuses available from 1969 to 2009.

3.1.1 Subnational population counts

For inputs to the model, female population counts by single year of age for ages 15-49 and subnational
administrative region are obtained directly from the IPUMS-International microdata. As these data are
samples (most commonly 10%), the microdata are multiplied by the person weights to obtain counts by age
and area.1 For Kenya, the first administrative units are provinces, and the second administrative units in
IPUMS are districts. There are eight provinces and 35 districts. The districts represent slightly larger groups
than the 47 Kenyan counties, which are harmonized and temporally stable (IPUMS (2018)). Provinces and
districts are illustrated below in Fig 1.

Note that the raw data may suffer from age heaping, where population counts display a preference for ages
ending in 0 or 5. Following standard practice (e.g. UNPD (2017b)) the raw data are smoothed to adjust for

1The sampling error introduced by considering sampled microdata is accounted for in the data model, refer to the Methods
section for details.
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Figure 1: Map of Kenya provinces, showing IPUMS harmonized districts.

problems with age heaping.2

3.1.2 Net-migration counts

Information on internal net-migration is also obtained from national censuses. Net-migration is the difference
between the number of in-migrants and out-migrants in an area. Thus, it can either be positive, if more
people move to an area than leave, or negative, if the opposite is true. For the case of Kenya, net-migration
counts can be derived using information from two questions:

• A person’s location one year ago (IPUMS harmonized variable MIGRATE1). The information is provided
in the form of categories, i.e. same major administrative unit, different minor administrative unit;
different major and minor administrative unit; abroad. Migrants are limited to those who were in a
different minor or major administrative unit one year ago.

• A person’s district of residence one year ago (for Kenya, this is the variable MIGKE).

Given these two variables, we can calculate the net-migration by age for a particular district in the year
before the census. For example, to get counts for net-migration for Nairobi in 2008, use information from the
2009 census and:

• calculate the number of in-migrants by summing residents in Nairobi who indicated they were in a
different administrative unit one year ago;

• calculate the number of out-migrants by summing residents in other districts who indicated they lived
in Nairobi one year ago; and

• take the difference between the in-migrants and out-migrants.

We calculated net-migration in this way by age, for each district and each census.
2We used a smoothing spline (‘smooth.spline’ in R) to smooth population counts across age. In future work, we aim to

formulate a Bayesian method to adjust for age heaping, which incorporates a penalized splines regression with known digit
preferences in age reporting.
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3.2 National estimates from WPP

The World Population Prospects (WPP) are the official population estimates and projections produced by
the United Nations. WPP is revised every two years, with the latest revision being in 2017 (UNPD 2017a).
WPP estimates are produced using a combination of census and survey data, and demographic and statistical
methods. Both population counts and mortality estimates from WPP are used in the model.

It is important to ensure that the sum of population estimates at the regional level agrees with published
estimates at the national level. National population counts produced by WPP are used as a constraint in the
model. The WPP models populations of five-year age groups every five years from 1950-2100.

National mortality estimates produced by WPP are used as the basis of a mortality model for patterns at the
regional level. WPP uses the relationship between infant mortality and the probability of dying between ages
15 and 60, i.e. 45q15, to estimate a life table based on Coale-Demeny Model Life Tables (UNPD 2017b). We
use estimates of the probability of dying between ages x and x+ 5, 5qx. As we estimate population by single
year age, we convert these five year probabilities to probabilities of death between x and x+ 1, 1qx, using
linear interpolation.

3.3 Other potential data sources

We use census data and WPP estimates as inputs to the model. There are other available data sources that
could be used as inputs. These sources and the reasons for not including them are discussed below.

3.3.1 Mortality

Mortality is estimated at the subnational level based on national patterns of mortality from WPP, as well as
changes in subnational population counts over time. Thus, no explicit information on subnational mortality
levels is used; mortality is estimated based on likely patterns at the national level and intercensal changes in
population. There are two main sources for subnational mortality data in Kenya that are not included as
data inputs.

Firstly, the Demographic and Health Survey (DHS) collects information about sibling mortality histories
through the ‘maternal mortality module’. Adult mortality can be calculated from these data using the sibling
history method, where cohorts of siblings are constructed and age-specific mortality rates are calculated based
on when they died. Previous research has illustrated sibling data produces relatively reliable estimates at
the national level (World Health Organization (WHO) 2016a). However, the DHS does not ask the location
of residents of the siblings who died, thus the data is difficult to use at the subnational level. It could be
assumed that there is no migration between areas and use sibling mortality as a basis of estimates of mortality
in the area of the interview respondent. However, this would confound estimates of mortality and migration
parameters in the model, and given death counts by district can be quite small and uncertain, the sibship
mortality information is not currently included. It should be noted that mortality information from the DHS
could potentially be used at the national level, in replacement of (or as well as) the WPP estimates. This
would avoid the reliance on WPP mortality estimates, which themselves are modeled using Coale-Demeney
model life tables (UNPD (2017b)). Future work will investigate the use of DHS mortality data as a potential
input at the national level.

A second source of information on subnational mortality comes from a question about household deaths,
that was collected in the most recent census (2009). This can be used to obtain death probabilities by age.
However, previous research has found that the value of 45q15 implied by household deaths is often much lower
or higher than other mortality sources (Masquelier et al. 2017). Indeed, mortality information from census
household deaths is excluded from other mortality analyses due to its unreliable nature (e.g. child mortality,
see UN-IGME (2017)). As such, we chose to omit this information for now. Future work will investigate this
data source to see if it can be used to inform age patterns of mortality by subnational region.
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3.3.2 Migration

There are two other potential sources of information on internal migration in Kenya that are not included as
data inputs. Firstly, the census also includes a question about how many years the person has resided in
their current locality of residence, referring to the district level. The question is asked in the two most recent
censuses (1999 and 2009). Based on the year of the census and the age of the respondent, as well as how
many years they indicated they had lived in the current locality, the implied year and age of in-migration can
be calculated. However, this method gave much lower numbers of in-migration compared to those implied by
the ‘location one year ago’ question. As such this information was not used in the model.

Secondly, the DHS contains some information about migration.3 For Kenya, it is possible to obtain information
about the proportion of the population who moved to a particular province in the year before the survey.
However, when compared to corresponding data from the census, there were large discrepancies, and trends
in DHS proportions were erratic over time.

4 Model

Our aim is to obtain estimates of the number of women aged 15-49 by region and year for a certain time
period. Let ηr,t be the (true) population of women of reproductive age in region r at time t. In our modeling
framework we consider age-groups of women from a cohort perspective and project population counts in each
age through time. In particular, we will estimate the number of women at each age a and cohort c in region
r, ηr,a,c, and then sum the relevant ages (15-49) and cohorts to obtain ηr,t:

ηr,t =
∑
a;c[t]

ηr,a,c (2)

We chose to model from a cohort perspective because this allows some demographic structure about mortality
and migration trends across age and cohorts to be built into the model. In particular, we build up from a
cohort component framework (Leslie (1945), Wachter (2014)), which relates population counts to mortality
and migration patterns. Mortality and migration are then modeled in a hierarchical framework. Note that as
the youngest age that we are interested in is age 15, we do not consider fertility or births as part of the model.

This section describes the model in detail. For a summary of the model set-up, see Appendix A.

4.1 Model for true population

We model the true number of women at age a in cohort c and region r as

ηr,a,c = η∗
r,a,c · εη (3)

where η∗
rac is the expected number of women and εη is some distortions around the expected level. On the

log scale this is equivalent to

log ηr,a,c = log η∗
r,a,c + log εη (4)

We assume E(log εη) = 0 and V ar(log εη) = σ2
η. The expected number of women at age a in cohort c and

region r is based on a cohort component method,

η∗
r,a,c = η∗

r,a−1,c · ρr,a−1,c + φr,a−1,c (5)
3Note that questions about migration in the DHS differ by country. The migration questions in the Kenya DHS are quite

minimal; however for other countries there may be more useful data available.
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that is, the number in age group a is the number in the previous age a−1 in that cohort times the survivorship
multiplier ρr,a−1,c, plus net migration φr,a−1,c.

4.2 Data model for observed population counts

Let yr,a,c be the observation of population in region r, age a and cohort c.4 We assume that:

yr,a,c ∼ N(ηr,ac, s2
rac) (6)

That is, the population count we observed is distributed around the true population with some error. The
s2
rac captures sampling error in the data observations. As we are using the IPUMS 10% sample microdata, the
sampling variance is derived from assuming the observed population is a draw from a binomial distribution
with p = 0.1 and n equal to the observed population yrac.

4.3 Priors on first year and age

As a consequence of the cohort component setup, the population at a particular age is estimated using the
population at the previous age in the same cohort. As such we need to set priors on the populations at the
initial age of estimation (age 15) and first year (1979). Define br,c as the mean of the prior on the first age
in region r and cohort c and dr,f−a as the mean of the prior on the population in the first period f , which
corresponds to cohort f − a. To obtain these values:

• The proportion of the total population in each age and region is calculated for each census year.
• These proportions are linearly interpolated across the whole estimation period, and applied to the WPP

estimate of the national population in each year.
• brc is then the estimated population of 15 year olds in each region and cohort; and dr,f−a is are the

estimated populations by age from the first year.

We then assume priors of the form:

log ηr,1,c ∼ N(log br,c, 1) (7)
log ηr,a,(f−a) ∼ N(log dr,a, 1) (8)

Choosing a variance equal to 1 means these priors are relatively uninformative.

4.4 Mortality

To estimate the survivorship multipliers, ρr,a−1,c, we want to estimate the expected conditional probability of
survival given age a and cohort c. This is equal to the complement of the probability of dying in the age
interval, i.e.

ρr,a−1,c = 1 − qr,a−1,c (9)

where qr,a−1,c is the probability of dying between ages a− 1 and a.

We use information about mortality trends at the national level as the basis for a mortality model at the
subnational level. A semi-parametric model is used to capture shape of national mortality through age and
time, while allowing for differences by region. In particular, we model regional mortality on the logit scale as

4Note that as discussed in the Data section, the observed counts have been adjusted to account for age-heaping.
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logit qr,a,c = logit q̄a + β1,r,c · Y1,a + β2,r,c · Y2,a (10)

where logit q̄a is the mean age-specific logit mortality schedule of the national mortality curves and Y1 and
Y2 are the first two principal components derived from national-level mortality schedules. Modeling on the
logit scale ensures the death probabilities are between zero and one.

Principal components create an underlying structure of the model in which regularities in age patterns of
human mortality can be expressed. Many different kinds of shapes of mortality curves can be expressed
as a combination of the components. Incorporating more than one principal component allows for greater
flexibility in the underlying shape of the mortality age schedule. Using SVD for demographic modeling and
forecasting first gained popularity after Lee and Carter used the technique as a basis for forecasting US
mortality rates (Lee and Carter (1992)). More recently, SVD has become increasingly used in demographic
modeling, in both fertility and mortality settings (Schmertmann et al. (2014); Clark (2016); Alexander,
Zagheni, and Barbieri (2017)).

Principal components were obtained from a decomposition on a matrix which contains a set of standard
mortality curves. As discussed in the Data section, we used national Kenyan life tables published in the
World Population Prospects 2017 (UNPD 2017a). The mean mortality schedule and the first two principal
components for Kenyan national mortality curves between ages 15-49 from 1950–2020 are shown in Fig. 2.
We used constrained principal components computation to ensure all components were non-negative.5 This
was done to ensure HIV/AIDS mortality would affect each age in the same direction.

The mean logit mortality schedule shows a standard age-specific mortality curve, with mortality increasing
over age. The first two principal components have demographic interpretations. The first shows the average
contribution of each age to mortality improvement over time. This interpretation is similar to the bx term in
a Lee-Carter model (Lee and Carter 1992). For the case of Kenya, the second principal component most
likely represents the relative effect of HIV/AIDS mortality by age.

The principal component coefficients for each region and year, βd,r,c (for d = 1, 2) are assumed to be a draw
from a national distribution:

βd,r,c ∼ N(µd,c, σ2
d,c) (11)

This hierarchical structure allows information about mortality trends to be pooled across regions. The mean
coefficient parameters µd,c are modeled as a random walk process:

∆µd,c ∼ N(0, σ2
d) (12)

4.5 Migration

In addition to mortality, the model for the true population (Eq. 5) also contains a migration term, φrac. As
this is capturing net-migration, it can either be positive or negative. Allowing a migration term for each age
in each year and region requires many parameters to be estimated, with very little information available.
However, when looking at the available data on migration for Kenya, there were clear patterns by age and
region, allowing for a simpler migration model with much fewer parameters to be proposed.

Figure 3 shows net migration as a proportion of total population for each of the districts in Kenya based on
the available census data. This chart suggests that, for the majority of districts, net migration is negligible
relative to overall population size.

5Non-negative principal components were calculated in R using the nsprcomp package.
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Figure 2: Mean logit mortality and first two principal components

As a consequence, for modeling purposes we assume net migration is zero for 23 of the 35 districts. For the
remaining 12 districts, listed in the table below, net migration is modeled.

District Areas covered
404001001 Nairobi, Westlands
404004003 Embu, Kangundo, Kibwezi, Machakos, Makueni, Mbeere, Mbooni, Mwala, Nzaui, Yatta
404004004 Kitui North, Kitui South (Mutomo), Kyuso, Mwingi
404006001 Bondo, Rarieda, Siaya
404002002 Nyeri
404006004 Borabu, Gucha, Kisii, Manga, Masaba, Nyamira
404007006 Eldoret East, Eldoret West, Wareng
404007009 Kaijiado, Loitoktok, Molo, Naivasha, Nakuru
404008001 Butere, Emuhaya, Hamisi, Kakamega, Lugari, Mumias, Vihiga
404008002 Bungoma, Mt. Elgon
404008003 Bunyala, Busia, Samia, Teso
404003001 Kilindini

Figure 4 shows the age distribution of net migration from census data in the districts where migration is
modeled. These data suggest that the age distributions over time are fairly stable. As such, for model
simplicity, we assume a stable age distribution of migration across time.
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Figure 3: Net migration as a proportion of population, by district and year
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Figure 4: Net migration by age as a proportion of total net migration
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4.5.1 Model for net migration

The net migration in region r, age a and cohort c, φr,a,c is modeled as

φr,a,c =
{
ηr,c · πr,c ·Ar,a, if region is a migration region
0, otherwise.

(13)

where

• ηr,c is the total population (summed across age) in region r and cohort c
• πr,c is the proportion of total population that is net-migration
• Ar,a is the proportion of total net-migration at age a for region r. This is derived from the data; taking

the average of smoothed age distributions across all census years (i.e. the average of data shown in Fig.
4).

The ‘true’ proportion of the total population that is net-migration, πrc is estimated, partially informed by
census data inputs. In particular, it is assumed that the ith observed proportions, Prc[i], are distributed
around the true proportions, with some error:

Pr,c[i] ∼ N(πr,c, σ2
P ) (14)

The migration proportion for each region and cohort, πrc is modeled as a random walk, constrained to be
within bounds of [−0.2, 0.2], i.e.

πr,c ∼ N(πr,c−1, σ
2
π)T [−0.2, 0.2] (15)

These truncation bounds were chosen based on looking at reasonable upper and lower bounds from the data.

4.6 National Constraint

An important part of estimating subnational populations is to ensure the sum across all regions is consistent
with previously published national population estimates. In particular, we would like to ensure that population
counts for each five-year age group are consistent with the national population estimates published as part of
the WPP (UNPD 2017a). The WPP models populations of five-year age groups at the mid-point of every
five years. As such, we constrain the population in each five year age group to be within bounds that are
approximately 90% and 110% of the relevant WPP estimate, and this constraint is implemented every five
years for WPP years e.g. 1982, 1987, . . . , 2017. These lower and upper bounds are estimated within the
model:

Lg,y <
∑
a[g],r ηa,y ≤ Ug,y (16)

logLg,y ∼ N(log 0.9WPPg,y, 0.1)T (, logWPPg,y) (17)
logUg,y ∼ N(log 1.1WPPg,y, 0.1)T (logWPPg,y, ) (18)

where

• Lg,y and Ug,y are the lower and upper bounds on the national population in age group g and WPP
year y.

• WPPg,y refers to the WPP estimate of the national population in age group g and WPP year y.

Note that T (, ) refers to truncation of the distribution with particular bounds. The lower bound Lg,y is not
left-truncated but is right-truncated to be no more than logWPPg,y. For the upper bound, the opposite is
true.
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4.7 Projection

While the modeling framework focuses on reconstruction of past WRA, projection of populations can be
incorporated. The model set-up allows trends in population counts by age and region to be projected into
the future. The mean coefficients µd,c can be projected forward according to the setup defined in Eq. 12 and
these can then be used in combination with the principal components to obtain projections and uncertainty
for population counts. The WPP produces projections of national populations up to 2050, and these can be
incorporated into the model to include a constraint on the sum of the subnational projections.

In particular, to project the number of women of age a in region r in cohort c+ 1:

1. draw values for µd,c+1 based on Eq. 12 and the estimate for σd;

2. use these values to calculate the probability of death (based on Eq. 10) and the corresponding mortality
multiplier ρr,a,c+1;

3. calculate values for φr,a,c+1 based on Eq. 13; and

4. use these values to calculate value for ηr,a,c+1 based on Eq. 5.

Note that there are no restrictions on the projections of the principal component coefficients. However, given
that the second principal component appears to relate to HIV/AIDS mortality, we would expect coefficients
related to this dimension to eventually reach zero. Future work will focus on building plausible projections
for these coefficients.

4.8 Computation

The model was fitted in a Bayesian framework using the statistical software R. Samples were taken from
the posterior distributions of the parameters via a Markov Chain Monte Carlo (MCMC) algorithm. This
was performed using JAGS software (Plummer 2003). Standard diagnostic checks using trace plots and the
Gelman and Rubin diagnostic (Gelman and Rubin 1992) were used to check convergence.

Best estimates of all parameters of interest were taken to be the median of the relevant posterior samples.
The 95% Bayesian credible intervals were calculated by finding the 2.5% and 97.5% quantiles of the posterior
samples.

5 Results

We fitted the model to 35 Kenyan districts over the period 1979-2020. As discussed in the Model section, we
obtained estimates of population at every age between 15-49, as well as parameters associated with mortality
and migration. This section highlights some key features of the results.

5.1 Population over age, period and cohorts

Fig. 5 shows the WRA population by province in 1979-2020. The black line and associated shaded area are
the model estimates and associated 95% credible intervals. The red dots and error bars are the data from
decennial censuses and associated sampling error. Populations of WRA are increasing in every province,
with the two largest provinces being Nairobi and Rift Valley. While Northeastern is the smallest province by
population size, the growth rate is relatively rapid. This is likely due to the relatively high fertility rates
in this province (Westoff and Cross (2006); Kenya National Bureau of Statistics (2015)), whereas rapid
population increases in Nairobi are driven by in-migration. Fig. 6 shows population increases are concentrated
in districts surrounding Nairobi.

Fig. 7 decomposes the population of WRA into the proportion by age for each year for each province. For
most provinces, the proportion of the total WRA decreases by age. The notable exception is Nairobi, where
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Figure 7: Estimates of age structure by province, Kenya, 1979-2020.

net in-migration at younger working ages causes the age distribution to peak between 20-30. The Nairobi
age distribution is becoming increasingly older, possibly due to the declining fertility rates. Indeed, for most
other provinces the slope of the age distribution is decreasing over time, leading to an older population of
WRA. The exception is Northeastern, where fertility rates are still very high (Kenya National Bureau of
Statistics (2015)).

The populations of WRA at each age can also be visualized in terms of cohorts. Fig. 8 shows the populations
by age for each cohort in four different districts: Embu, where there is net out-migration, Kaijiado, which has
modest in-migration, Kiambu, where there is zero net-migration, and Nairobi, where there is high in-migration.
The populations at each age are broadly increasing across cohort, although the effect of high HIV/AIDS
mortality can be seen as the ‘kinks’ in population affecting each cohort at different ages.

5.2 Comparison with WPP national estimates

Within the model framework, the sum of the subnational population estimates is constrained to be within
10% of the WPP estimates. Fig. 9 shows the estimated national total by year, calculated by summing
across areas (shown in black) compared to the WPP estimates for Kenya over the same period. The median
estimates for the total population are very similar to WPP. Uncertainty around the national total increases
markedly in the projection period, beginning 2009.
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5.3 Mortality change

Mortality patterns are estimated with the model as a linear combination (on the logit scale) of a mean mortality
schedule plus two principal components, which respectively broadly capture age-specific contributions to
overall mortality change, and HIV/AIDS mortality. The figures below show estimates and 95% credible
intervals for the national mean coefficients, i.e. µd,c over time (refer to Eq. 11). Results for the first principal
component, µ1,c suggest that overall mortality is generally declining over time, with a plateau in progress
during the 1990s. The coefficient on the second principal component, µ2,c, shows an increase in HIV/AIDS
mortality during the 1990s and 2000s, peaking around 2005, before declining through the projection period.
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Region-specific coefficients of mortality showed very similar patterns of change over the period. The variance
of the β1’s around the µ1 was estimated to be 9.5 [95% CI: 5,8, 12.7] while the variance of the β2’s around the
µ2 was estimated to be 1.8 [95% CI: 0.3, 5.3]. Broadly, there was some evidence to suggest overall mortality
levels were highest in Nyanza and Western, and lowest in Rift Valley and Coast (although differences were
not statistically significant). During the years where HIV/AIDS mortality peaked, it was highest in Nairobi
and lowest in Northeastern.

6 Discussion

In this paper we proposed a Bayesian cohort component projection framework to estimate the population of
women of reproductive age by subnational regions. The model uses information on population and migration
counts from censuses, as well as mortality patterns from national schedules, to reconstruct WRA populations
based on cohorts moving through time. The modeling framework also naturally extends to allow projection
of populations. The model ensures the national WRA populations implied by the sum of subnational areas
agree with pre-published UN estimates.

The model was used to estimate and project WRA populations for 35 districts in Kenya over the period
1979-2020. Results suggested continued growth of WRA populations in all districts, and accelerated growth in
particular in areas such as Nairobi and Northeastern. In general, the average age of WRA has increased over
time. The mortality component of the modeling framework highlighted the stagnating progress through the
1990s and 2000s, largely due to HIV/AIDS, but more recent mortality declines. The model requires inputs
from national censuses and WPP estimates, which are available for the majority of countries. Thus, while the
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model was tested on estimation in Kenya, the methodology is applicable to a wide range of countries with
very little alterations.

There are several advantages and contributions of this modeling framework to the estimation of subnational
populations. The model is governed by processes of mortality and migration, tracking cohorts of women as
they move through time. This has advantages over more aggregate techniques such as interpolation and
extrapolation, because it ensures that populations of women at each age will always make sense from a
demographic point of view (for example, a population of women at age a can never be more than the same
cohort at age a− 1, above what is implied by net migration). In addition, this process takes into account
intercensal events such as trends in HIV/AIDS mortality.

Secondly, the modeling framework proposes a parsimonious model for internal net-migration across subnational
areas. In cohort component models, it is often the case that migration components are assumed to be negligible
or considered to just be the residual once mortality has been taken into account. Very little data usually
exists on migration patterns, and estimation of all migration components by age, region and year becomes
very intensive. After observing key patterns in the data, we proposed a net-migration model which separates
migration patterns into independent age and time components. The result is an age-specific net migration
model with parameters that are more easily identifiable. However, while the current migration model works
well for the case of Kenya, it may be too restrictive for other countries. The migration component could
be modeled more flexibly by including changes in age structure over time, for example. Modeling decisions
should be informed by the data that are available.

The incorporation of a cohort component projection model into a probabilistic setting allows for different
sources of uncertainty, such as sampling and non-sampling error, to be included into the modeling process.
The Bayesian hierarchical framework allows information from different data sources to be consolidated without
the need for post-estimation redistribution changes as is often the case with subnational population estimation
(Swanson and Tayman (2012)). In addition, it allows for increased flexibility in modeling population processes
compared to traditional deterministic techniques, while still keeping the basis of an underlying demographic
process.

6.1 Future work

The proposed model produced promising initial results when applied to the reconstruction and projection of
WRA populations in Kenya. Future work will focus on investigating the possibility of including additional
data sources to inform subnational mortality patterns. Results of the mortality parameter estimation suggests
the mortality component in the model would benefit from additional information and constraints. For
example, the credible intervals around the mean coefficients on the principal components are relatively large,
particularly for the projection period. This suggests that there are many different combinations of the mean
mortality schedule and two principal components that lead to reasonable population change over time. Given
what we know about overall mortality change in Kenya, and in particular, decreases in HIV/AIDS mortality
(Kenya National Bureau of Statistics (2015)), constraints could be put on mortality parameters in projections;
for example, the HIV/AIDS mortality component could be assumed to decline to an eventual level of zero. In
addition, there is very little variation in mortality estimated across regions, even though mortality variation
across urban and rural areas in Kenya has been documented elsewhere (Kenya National Bureau of Statistics
(2015)). As discussed in the Data section, we chose to omit subnational mortality data available from sibling
histories, because of issues surrounding the location of siblings at death, in combination with well-established
issues of sibling methods, especially when sample sizes are small (Masquelier (2013)). However, future work
will focus on assessing the usability of this data at both the national and subnational level, and of different
methods to utilize this information, including both sibling and network survival methods (Feehan, Mahy, and
Salganik (2017)).

Additionally, we plan to investigate other forms of age heaping adjustments. As discussed in the Data section,
the input to the model is smooth census counts. However, it would be possible to incorporate this adjustment
into the same modeling framework, thereby incorporating the uncertainty associated with smoothing into the
final estimates. Building on work by Camarda, Eilers, and Gampe (2008), one approach would be to model
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the underlying true distribution of age counts using penalized splines regression. This is then adjusted based
on a series of transition probabilities that represent the probability of age-misreporting.

Finally, the modeling framework does not consider fertility rates in the population accounting equation.
Although we are not explicitly estimating female births, WRA populations are implicitly affected by changes
in fertility rates over time, as the size of the birth cohort partially determines the size of the cohort at age 15
and above. Future work will investigate the relative trade-off between the additional information gained by
incorporating fertility trends, compared to the drawbacks of including potentially biased, poor-quality births
data and increasing model and estimation complexity.
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A Complete model

The current model is

yr,a,c ∼ N(ηr,a,c, s2
r,a,c)

η∗
r,a,c = η∗

r,a−1,c · ρr,a−1,c + φr,a−1,c

log ηr,a,c ∼ N(log η∗
rac, σ

2
η)

log ηr,1,c ∼ N(log br,c, 1)
log ηr,a,(f−a) ∼ N(log dr,a, 1)

ρr,a,c = (1 − qa,p[c])
logit qr,a,c = logit q̄a + β1,r,c · Y1,a + β2,r,c · Y2,a

βd,r,c ∼ N(µd,c, σ2
d,c)

∆µd,c ∼ N(0, σ2
d)

φr,a,c =
{
ηr,c · πr,c ·Ar,a, if region is a migration region
0, otherwise.

ηr,c =
∑
a

ηr,a,c

Pr,c ∼ N(πr,c, σ2
P )

πr,c ∼ N(πr,c−1, σ
2
π)T [−0.2, 0.2]Lg,y <

∑
a,r ηg,y ≤ U,

logLg,y ∼ N(log 0.9WPPg,y, 0.1)T (, logWPPg,y)
logUg,y ∼ N(log 1.1WPPg,y, 0.1)T (logWPPg,y, )

Explanation of symbols:

• yr,a,c is the observation of population in region r, age a and cohort c. This has been smoothed using
the built in splines smoother in R.

• ηr,a,c is the true population in region r, age a and cohort c
• br,c is the prior on the first age group in region r and cohort c. This is derived from multiplying the
WPP1,c by the proportion of people in age group 1 in region r in cohort c. The proportion is derived
from linearly interpolating the census proportions.

• dr,c is the prior on the population in the first period f − c. This is derived from multiplying the
WPPa,(f−a) by the proportion of people in each age group in region r in cohort c.

• ρr,a,c is a mortality multiplier: the expected conditional probability of survival given age a and cohort
c. This is equal to the complement of the probability of dying in the age interval.

• ${q}_a $ is the mean age-specific mortality schedule of the standard logit mortality curves
• The β’s are the coefficients associated with the principal components
• The Y ’s are the first and second principal component of the demeaned standard logit mortality curves
• φr,a,c is the net-migration component. This is set to zero if region is deemed to have negligible migration.
• πr,c is the proportion of total population that is net-migration
• Ar,a is the proportion of total net-migration at age a for region r. This is derived from the data; taking

the average of smoothed age distributions in census years.
• Pr,c is the observation of proportion of total population that is net-migration in region r and cohort c.
• Lg,y and Ug,y are the lower and upper bounds on the national population in age group g and WPP

year y.
• WPPg,y refers to the World Population Prospects estimate of the national population in age group g

and WPP year y.
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